MATH 245 F24, Exam 1 Solutions

- 1. Carefully define the following terms: factorial, floor. The factorial, denoted !, is a function from \mathbb{N}_0 to \mathbb{N} defined recursively as: 0! = 1, and $n! = n \cdot (n-1)!$ (for $n \ge 1$). Let $x \in \mathbb{R}$. Then integer n is the floor of x if it satisfies $n \le x < n+1$.
- 2. Carefully state the following theorems: Commutativity (for Propositions), Addition Semantic Theorem.

The Commutativity Theorem says: For any propositions p, q, we have $p \lor q \equiv q \lor p$ and also $p \land q \equiv q \land p$. The Addition Semantic Theorem says: For any propositions p, q, we have $p \vdash p \lor q$.

- 3. Prove Theorem 1.6, which says: If $n \in \mathbb{Z}$, then n is at least one of {odd, even}. Direct proof, assume $n \in \mathbb{Z}$. Apply the Division Algorithm Theorem to n, 2, which gives integers q, r satisfying both n = 2q + r and $0 \le r < 2$. Now there are two cases. Case r = 0: Now n = 2q + 0 = 2q, and $q \in \mathbb{Z}$, so n is even. Case r = 1: Now n = 2q + 1, and $q \in \mathbb{Z}$, so n is odd. In all cases, n is at least one of {odd, even}.
- 4. Prove or disprove: For all $a, b, c \in \mathbb{Z}$, if ac|bc then a|b. The statement is false, and requires a counterexample. Take a = 2, b = 3, c = 0, k = 1. We have ack = 0 = bc, so ac|bc since $k \in \mathbb{Z}$. We will now prove that $a \nmid b$ by contradiction: if a|b then there would be some $n \in \mathbb{Z}$ with an = b, then 2n = 3, so n = 1.5. Since this is not an integer, we have a contradiction.
- 5. Simplify $\neg((p \to q) \to (r \land s))$ as much as possible, where only basic propositions are negated. Be sure to justify each step.

Step 1: By Thm 2.16 (Negated Conditional Interpretation), the expression becomes $(p \rightarrow q) \land \neg (r \land s)$.

Step 2: By De Morgan's Law, the expression becomes $(p \to q) \land ((\neg r) \lor (\neg s))$.

NOTE: Some of you used Conditional Interpretation to change $p \to q$ to $q \lor (\neg p)$ at the end. This is a matter of taste (is this simpler?). I graded either version as correct.

ALTERNATE SOLUTION:

- Step 1: By Conditional Interpretation, the expression becomes $\neg((r \land s) \lor \neg(p \rightarrow q))$.
- Step 2: By De Morgan's Law, the expression becomes $(\neg(r \land s)) \land \neg \neg(p \rightarrow q)$.
- Step 3: By Double Negation, the expression becomes $(\neg(r \land s)) \land (p \to q)$.
- Step 4: By De Morgan's Law, the expression becomes $((\neg r) \lor (\neg s)) \land (p \to q)$.
- 6. Let p, q, r be propositions. Without using truth tables, prove that: $p \to q, r \to q, p \lor r \vdash q$. We must begin by assuming that $p \to q, r \to q, p \lor r$ are all true. Since $p \lor r$ is true, there are two cases:

Case p is true: Apply modus ponens with $p \to q$, concluding q is true. Case r is true: Apply modus ponens with $r \to q$, concluding q is true. In all cases, q is true. 7. Let $x \in \mathbb{R}$. Prove that if x^2 is irrational, then x is irrational.

Contrapositive proof. Assume that x is not irrational, i.e. x is rational. Then there are integers a, b, with $b \neq 0$, such that $x = \frac{a}{b}$. We now square to get $x^2 = \frac{a^2}{b^2}$. Both a^2 and b^2 are integers, and b^2 is not zero, so x^2 is rational, i.e. not irrational.

8. Suppose that p is prime. Prove that p^2 is composite.

Since p is prime, we know that $p \in \mathbb{Z}$ and also $p \ge 2$. Now, $p|p^2$ since $p \cdot p = p^2$ and p is an integer. Also, p > 1 since $p \ge 2 > 1$. Next, we multiply both sides of p > 1 by the positive p to get $p^2 > p$. Combining, we get $1 . Lastly <math>p^2$ is an integer (since p is an integer) and $p^2 > p \ge 2$ so $p^2 \ge 2$. Hence p is composite.

9. Prove that, for all propositions p, q, we have $(p \uparrow q) \land (p \to q) \equiv \neg p$.

Let p, q be arbitrary propo-	p	q	$p\uparrow q$	$p \to q$	$(p\uparrow q)\wedge (p\to q)$	$\neg p$
sitions. In the truth table	Т	Т	\mathbf{F}	Т	\mathbf{F}	\mathbf{F}
at right, the fifth and sixth						
columns agree, so	Т	\mathbf{F}	Т	\mathbf{F}	\mathbf{F}	\mathbf{F}
$(p \uparrow q) \land (p \to q) \equiv \neg p.$						
	F	Т	Т	Т	Т	Т
	\mathbf{F}	\mathbf{F}	Т	Т	Т	Т

10. Prove or disprove: $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}, (x+1)^2 < y < (x+2)^2$. The statement is false. We need to prove $\neg \forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}, (x+1)^2 < y < (x+2)^2$, i.e. $\exists x \in \mathbb{Z}, \forall y \in \mathbb{Z}, \neg((x+1)^2 < y < (x+2)^2)$. Hence, we need to prove $\exists x \in \mathbb{Z}, \forall y \in \mathbb{Z}, (x+1)^2 \ge y \lor y \ge (x+2)^2$.

SOLUTION 1: Choose x = -1, and let $y \in \mathbb{Z}$ be arbitrary. We have two cases, either y is positive or it isn't.

Case y is positive: y > 0, but $y \in \mathbb{Z}$, so $y \ge 1$ (by Thm 1.12). i.e. $y \ge (x+2)^2$, so by addition $(x+1)^2 \ge y \lor y \ge (x+2)^2$.

Case y isn't positive: $y \le 0$, so $y \le (x+1)^2$, so by addition $(x+1)^2 \ge y \lor y \ge (x+2)^2$. In all cases, $(x+1)^2 \ge y \lor y \ge (x+2)^2$.

SOLUTION 2: Choose x = -3, and let $y \in \mathbb{Z}$ be arbitrary. We will prove that $(x + 1)^2 < y < (x + 2)^2$ is impossible (using the contradiction semantic theorem); if this were true then $(-2)^2 < y < (-1)^2$, and hence 4 < y < 1, and hence 4 < 1. But $4 \not< 1$. Hence $\neg((x + 1)^2 < y < (x + 2)^2)$, as desired.