
MATH 245 F24, Exam 1 Solutions

1. Carefully define the following terms: factorial, floor.
The factorial, denoted !, is a function from N0 to N defined recursively as: 0! = 1, and
n! = n · (n − 1)! (for n ≥ 1). Let x ∈ R. Then integer n is the floor of x if it satisfies
n ≤ x < n + 1.

2. Carefully state the following theorems: Commutativity (for Propositions), Addition Semantic
Theorem.
The Commutativity Theorem says: For any propositions p, q, we have p ∨ q ≡ q ∨ p and also
p ∧ q ≡ q ∧ p. The Addition Semantic Theorem says: For any propositions p, q, we have
p ` p ∨ q.

3. Prove Theorem 1.6, which says: If n ∈ Z, then n is at least one of {odd, even}.
Direct proof, assume n ∈ Z. Apply the Division Algorithm Theorem to n, 2, which gives in-
tegers q, r satisfying both n = 2q + r and 0 ≤ r < 2. Now there are two cases.
Case r = 0: Now n = 2q + 0 = 2q, and q ∈ Z, so n is even.
Case r = 1: Now n = 2q + 1, and q ∈ Z, so n is odd.
In all cases, n is at least one of {odd, even}.

4. Prove or disprove: For all a, b, c ∈ Z, if ac|bc then a|b.
The statement is false, and requires a counterexample. Take a = 2, b = 3, c = 0, k = 1. We
have ack = 0 = bc, so ac|bc since k ∈ Z. We will now prove that a - b by contradiction: if a|b
then there would be some n ∈ Z with an = b, then 2n = 3, so n = 1.5. Since this is not an
integer, we have a contradiction.

5. Simplify ¬((p→ q)→ (r ∧ s)) as much as possible, where only basic propositions are negated.
Be sure to justify each step.

Step 1: By Thm 2.16 (Negated Conditional Interpretation), the expression becomes (p →
q) ∧ ¬(r ∧ s).
Step 2: By De Morgan’s Law, the expression becomes (p→ q) ∧ ((¬r) ∨ (¬s)).
NOTE: Some of you used Conditional Interpretation to change p→ q to q ∨ (¬p) at the end.
This is a matter of taste (is this simpler?). I graded either version as correct.

ALTERNATE SOLUTION:
Step 1: By Conditional Interpretation, the expression becomes ¬((r ∧ s) ∨ ¬(p→ q)).
Step 2: By De Morgan’s Law, the expression becomes (¬(r ∧ s)) ∧ ¬¬(p→ q).
Step 3: By Double Negation, the expression becomes (¬(r ∧ s)) ∧ (p→ q).
Step 4: By De Morgan’s Law, the expression becomes ((¬r) ∨ (¬s)) ∧ (p→ q).

6. Let p, q, r be propositions. Without using truth tables, prove that: p→ q, r → q, p ∨ r ` q.
We must begin by assuming that p → q, r → q, p ∨ r are all true. Since p ∨ r is true, there
are two cases:
Case p is true: Apply modus ponens with p→ q, concluding q is true.
Case r is true: Apply modus ponens with r → q, concluding q is true.
In all cases, q is true.



7. Let x ∈ R. Prove that if x2 is irrational, then x is irrational.
Contrapositive proof. Assume that x is not irrational, i.e. x is rational. Then there are in-
tegers a, b, with b 6= 0, such that x = a

b . We now square to get x2 = a2

b2
. Both a2 and b2 are

integers, and b2 is not zero, so x2 is rational, i.e. not irrational.

8. Suppose that p is prime. Prove that p2 is composite.

Since p is prime, we know that p ∈ Z and also p ≥ 2. Now, p|p2 since p · p = p2 and p is an
integer. Also, p > 1 since p ≥ 2 > 1. Next, we multiply both sides of p > 1 by the positive p
to get p2 > p. Combining, we get 1 < p < p2. Lastly p2 is an integer (since p is an integer)
and p2 > p ≥ 2 so p2 ≥ 2. Hence p is composite.

9. Prove that, for all propositions p, q, we have (p ↑ q) ∧ (p→ q) ≡ ¬p.

Let p, q be arbitrary propo-
sitions. In the truth table
at right, the fifth and sixth
columns agree, so
(p ↑ q) ∧ (p→ q) ≡ ¬p.

p q p ↑ q p→ q (p ↑ q) ∧ (p→ q) ¬p
T T F T F F

T F T F F F

F T T T T T

F F T T T T

10. Prove or disprove: ∀x ∈ Z, ∃y ∈ Z, (x + 1)2 < y < (x + 2)2.

The statement is false. We need to prove ¬∀x ∈ Z, ∃y ∈ Z, (x + 1)2 < y < (x + 2)2, i.e.
∃x ∈ Z, ∀y ∈ Z, ¬

(
(x + 1)2 < y < (x + 2)2

)
. Hence, we need to prove ∃x ∈ Z, ∀y ∈

Z, (x + 1)2 ≥ y ∨ y ≥ (x + 2)2.

SOLUTION 1: Choose x = −1, and let y ∈ Z be arbitrary. We have two cases, either y is
positive or it isn’t.
Case y is positive: y > 0, but y ∈ Z, so y ≥ 1 (by Thm 1.12). i.e. y ≥ (x+2)2, so by addition
(x + 1)2 ≥ y ∨ y ≥ (x + 2)2.
Case y isn’t positive: y ≤ 0, so y ≤ (x + 1)2, so by addition (x + 1)2 ≥ y ∨ y ≥ (x + 2)2.
In all cases, (x + 1)2 ≥ y ∨ y ≥ (x + 2)2.

SOLUTION 2: Choose x = −3, and let y ∈ Z be arbitrary. We will prove that (x + 1)2 <
y < (x + 2)2 is impossible (using the contradiction semantic theorem); if this were true
then (−2)2 < y < (−1)2, and hence 4 < y < 1, and hence 4 < 1. But 4 6< 1. Hence
¬((x + 1)2 < y < (x + 2)2), as desired.


