MATH 245 F24, Exam 1 Solutions

Carefully define the following terms: factorial, floor.

The factorial, denoted !, is a function from Ny to N defined recursively as: 0! = 1, and
n!=n-(n—1) (for n > 1). Let x € R. Then integer n is the floor of x if it satisfies
n<z<n+l.

Carefully state the following theorems: Commutativity (for Propositions), Addition Semantic
Theorem.
The Commutativity Theorem says: For any propositions p, g, we have pV ¢ = ¢V p and also

pAq = qAp. The Addition Semantic Theorem says: For any propositions p,q, we have
pEpVva

Prove Theorem 1.6, which says: If n € Z, then n is at least one of {odd, even}.

Direct proof, assume n € Z. Apply the Division Algorithm Theorem to n, 2, which gives in-
tegers ¢, r satisfying both n = 2¢+ r and 0 < r < 2. Now there are two cases.

Case r = 0: Now n =2¢+ 0= 2q, and g € Z, so n is even.

Caser=1: Nown =2¢+ 1, and g € Z, so n is odd.

In all cases, n is at least one of {odd, even}.

Prove or disprove: For all a, b, ¢ € Z, if ac|bc then alb.

The statement is false, and requires a counterexample. Take a = 2,b = 3,¢ =0,k = 1. We
have ack = 0 = be, so aclbe since k € Z. We will now prove that a { b by contradiction: if a|b
then there would be some n € Z with an = b, then 2n = 3, so n = 1.5. Since this is not an
integer, we have a contradiction.

Simplify —((p — ¢q) — (r A s)) as much as possible, where only basic propositions are negated.
Be sure to justify each step.

Step 1: By Thm 2.16 (Negated Conditional Interpretation), the expression becomes (p —
q) A=(r A s).

Step 2: By De Morgan’s Law, the expression becomes (p — ¢) A ((—r) V (—s)).

NOTE: Some of you used Conditional Interpretation to change p — ¢ to ¢V (—p) at the end.
This is a matter of taste (is this simpler?). I graded either version as correct.

ALTERNATE SOLUTION:

Step 1: By Conditional Interpretation, the expression becomes =((r A s) V =(p — q)).
Step 2: By De Morgan’s Law, the expression becomes (=(r A s)) A ==(p — q).

Step 3: By Double Negation, the expression becomes (=(r A's)) A (p — q).

Step 4: By De Morgan’s Law, the expression becomes ((—r) V (=s)) A (p — q).

Let p, q,r be propositions. Without using truth tables, prove that: p — ¢,r — ¢,pV rtq.
We must begin by assuming that p — ¢, — ¢,p V r are all true. Since p V r is true, there
are two cases:

Case p is true: Apply modus ponens with p — ¢, concluding ¢ is true.

Case r is true: Apply modus ponens with r — ¢, concluding ¢ is true.

In all cases, g is true.



7.

10.

Let z € R. Prove that if 22 is irrational, then z is irrational.

Contrapositive proof. Assume that x is not irrational, i.e. x is rational. Then there are in-
tegers a,b, with b # 0, such that x = 3. We now square to get z? = ‘g—j. Both a? and b? are
integers, and b? is not zero, so =2 is rational, i.e. not irrational.

Suppose that p is prime. Prove that p? is composite.

Since p is prime, we know that p € Z and also p > 2. Now, p|p? since p - p = p? and p is an
integer. Also, p > 1 since p > 2 > 1. Next, we multiply both sides of p > 1 by the positive p
to get p? > p. Combining, we get 1 < p < p?. Lastly p? is an integer (since p is an integer)
and p? > p > 2 so p? > 2. Hence p is composite.

Prove that, for all propositions p, ¢, we have (p T q) A (p — q) = —p.

Let p,q be arbitrary propo- P ¢ pTtq p—q (PTeApP—q -p

sitions. In the truth table T T F T F F
at right, the fifth and sixth
columns agree, so T F T F F F
(Pta)Alp—q) =-p
F T T T T T
F F T T T T

Prove or disprove: Vo € Z, Iy € Z, (x+1)? <y < (z + 2)2.

The statement is false. We need to prove =Vx € Z, 3y € Z, (z +1)? <y < (z + 2)?, i.e.
dr € Z, Vy € Z, —|((£L' +1)2 <y < (zv+ 2)2). Hence, we need to prove dz € Z, Vy €
Z, (x+1)2?>yVy>(z+2)>%

SOLUTION 1: Choose x = —1, and let y € Z be arbitrary. We have two cases, either y is
positive or it isn’t.

Case y is positive: y > 0, but y € Z, soy > 1 (by Thm 1.12). i.e. y > (x4 2)2, so by addition
(z+1)?>>yVvy> (z+2)>%

Case y isn’t positive: y < 0, so y < (z + 1)2, so by addition (z +1)2 >y Vy > (z + 2)2.

In all cases, (z+1)2 >y Vy> (z+2)2

SOLUTION 2: Choose x = —3, and let y € Z be arbitrary. We will prove that (x + 1)? <
y < (x + 2)? is impossible (using the contradiction semantic theorem); if this were true
then (—2)2 < y < (—1)?, and hence 4 < y < 1, and hence 4 < 1. But 4 ¢ 1. Hence
=((x +1)? <y < (x +2)?), as desired.



